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Typically, ordered sets are perceived as 
larger than unordered sets.
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—the oldest known 

mathematical artefact

Contains 29 (30?) notches 
carved into baboon bone. 

Dated to 35 000 B.C.

Found in the Lebombo 
Mountains,  Swaziland.

A lunar cycle is 29.53 days
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But man counts.The second oldest is the 
Ishango bone.

Older than 20 000 years.

Found near Virunga National Park, 
Democratic Republic of Congo.

Contains three columns 
of grouped notches.
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11, 13, 17, 19
A prime quadruplet: 
p, p+2 p+6, p+8.

Closest possible grouping for p>3.
Proof: 0,2,4 = 0,2,1 (mod 3)

Are there 
infinitely 
many prime 
quadruplets?
Maybe.



But of course, this might 
all be for the grip…



So we learnt to count, 
and we learnt that there is no end of numbers.



So we learnt to count, 
and we learnt that there is no end of numbers.

But what is     ?



So we learnt to count, 
and we learnt that there is no end of numbers.

But what is     ?

And how do we separate III IIII  from III   IIII?



So we learnt to count, 
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But what is     ?

And how do we separate III IIII  from III   IIII?

Or III III    from III III?
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+0�
A’1:  m+1 = S(m),
A’2:  m+S(n) = S(m+n).

Of these,     is the easiest.+

This reduces addition to counting.

Addition is the mapping N x N -> N, 
such that
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is much worse.0

Placeholder:

1 4 1 40

Nothing: modern (Zermelo–Fraenkel) set theory 
introduces zero as the empty set:

0 = {}
2 = 1 [ {1} = {{}} [ { {{}} } = { {}, {{}} } = {0, 1}.
1 = 0 [ {0} = {} [ {{}} = {{}} = {0}.

3 = 2 [ {2} = . . . = { {}, {{}}, {{{}}} } = {0, 1, 2}.
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Zero as a placeholder appears only 300 BC 
(~2000 years later than the decimal system and 
the first calculations of   .) ⇡
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decimal system also appeared in India at that time.   
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0

0
= 0

Persian sifr (meaning ‘empty’) for zero in 976 AD.
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-3 is the equivalence class of all pairs of 
natural numbers (m,n) of the form (0,3), (1,4), 
(2,5), …

[(m,n)]� [(k, l)] = [(m,n)] + [(l, k)]

[(m,n)] + [(k, l)] = [(m+ k, n+ l)]

�[(m,n)] = [(n,m)]

[(m,n)]⇥ [(k, l)] = [(mk + nl,ml + nk)]

But this took a long time...
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historically always been introduced and 
understood as debts or financial deficits.

0

0
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But:

There has been confusion in the separation of 
the operation and the elements. 

It is not clear when the number line (with negative numbers) 
was introduced, or if it is even appropriate for man’s (or 
children’s) understanding of numbers and quantities. 

Negative integers (as numbers) were 
generally accepted by mathematicians only 
as the same time as the complex numbers. C
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How do humans store or represent 
numbers and quantities?

Signora Gaddi:

– handling large numbers is a mnemonic 
feat. It can be trained, but in some persons 
is due to synesthesia. 

Daniel Tammet:

To Tammet every integer 
0–10 000 has a specific 
form, touch, smell, or 
other characteristic.
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—which leads us to Cantor, Russell, Gödel, 
Cohen, and the continuum hypothesis…
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In the late 19th century several mathematicians started 
rejecting the idea (from Galileo and Euclid) that the 
whole must be larger than any one part of it.

Most famously, Cantor, using the concept of cardinality, 
that

(i) |A| = |B| <=> A is a bijective image of B, 
(ii) Each cardinality has a representative set,
showed that the powerset (set of all subsets) of any set 
always has a greater cardinality than the set itself.

|N| = @0 < @1 (size of the set of all countable ordinals)

|R| = 2

@0
(size of the powerset of N)
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But a number of obstacles arose:

1901  Russell’s paradox R = {x 62 x} =) [R 2 R () R 62 R]

Saved by Zermelo–Fraenkel set theory (ZFC).

1931  Gödel’s first incompleteness theorem:

A formal system with an inductively enumerable set of 
axioms capable of expressing fundamental (Peano) 
arithmetic cannot be both complete and consistent.  

1940  Gödel shows that the continuum hypothesis cannot be   
 disproved by means of ZFC.

1963  Cohen shows that the continuum hypothesis cannot be   
 proved by means of ZFC.



One can assume, or not assume, the existence of a 
set of cardinality strictly between that of the 
natural numbers and that of the reals, and do 
mathematics with or without this assumption — 
and there is no logical argument against it.



One can assume, or not assume, the existence of a 
set of cardinality strictly between that of the 
natural numbers and that of the reals, and do 
mathematics with or without this assumption — 
and there is no logical argument against it.

Still
– Some believe the continuum hypothesis is false; 
   others believe it is true.



One can assume, or not assume, the existence of a 
set of cardinality strictly between that of the 
natural numbers and that of the reals, and do 
mathematics with or without this assumption — 
and there is no logical argument against it.

Still
– Some believe the continuum hypothesis is false; 
   others believe it is true.

– Some believe ZFC lacks some important axiom.



One can assume, or not assume, the existence of a 
set of cardinality strictly between that of the 
natural numbers and that of the reals, and do 
mathematics with or without this assumption — 
and there is no logical argument against it.

Still
– Some believe the continuum hypothesis is false; 
   others believe it is true.

– Some believe ZFC lacks some important axiom.

– And some think it doesn’t have to do with mathematics.



One can assume, or not assume, the existence of a 
set of cardinality strictly between that of the 
natural numbers and that of the reals, and do 
mathematics with or without this assumption — 
and there is no logical argument against it.

Still
– Some believe the continuum hypothesis is false; 
   others believe it is true.

– Some believe ZFC lacks some important axiom.

But possibly more disturbing is the fact that this might be just one of 
many propositions that ‘doesn’t have to do with mathematics’.

– And some think it doesn’t have to do with mathematics.
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Today’s concepts of numbers and arithmetics have taken 
a long time to understand and develop.

Our everyday use and understanding of these might not 
always correspond to either their historical or current 
mathematical meaning.

Although the level of abstraction has no end, there is a 
clear and universal level of when we need to make an 
effort, and when not — and that is by 4.




